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Abstract
We study the influence of coupling between two concentric nanorings, embedded in two
different layers separated by an insulating barrier, on the exciton’s energy levels by the attractive
Fermionic Hubbard model. The hopping coefficients between different rings are derived and the
carriers’ cyclotron movement caused by the magnetic field are taken into account. We find the
amplitude of the Aharonov–Bohm oscillation is suppressed by the emergence of the Coulomb
interaction. The coupling leads to a decrease of the energy of the excited states and this
decrease varies significantly for different types of configuration for the electron and the hole.
The study of the energy dependence on the radii of the two rings shows that the lowest energy
level is determined by the small ring and the deviations of the exciton’s energy from that of the
single ring decreases with increasing magnetic field. The results also show that the energy of
the AB oscillation can be modulated by changing the thickness of the spacer.

1. Introduction

In recent years, following the advancement in nanoscopic
fabrication techniques [1–4], the properties of the ring-
like semiconductor nanostructures, also called nanorings or
quantum rings, have attracted much attention. In these
nanostructures, the electronic and optical properties are
strongly modified from those of solids by the quantum
confinement, which provides us more opportunities to control,
develop and apply new artificial materials. As one of the
most important properties, when a nanoring is penetrated
by a magnetic field, it shows an Aharonov–Bohm (AB)
oscillation in the binding energy, which has been studied
experimentally [5, 6] and theoretically by a single electron
model [7, 8] and the confined exciton model [9–12]. The
effects of the lateral applied steady electric field [13] and
alternating electric field [14] have also been studied.

It has been shown experimentally that the strong
coupling between nanorings can greatly influence the
photoluminescence (PL) spectra of the system. Granados et al
[3] studied the PL spectra of stacked layers of self-assembled
InGaAs nanorings with various GaAs spacers between those
layers. The samples show strong inhomogeneous broadened
and redshifted spectra when the thickness of the GaAs spacer
is smaller than 4.5 nm. The authors attribute these phenomena

to the broad size distribution and the coupling between layers.
Mano et al [4] reported the self-assembled formation of
concentric quantum double rings. Ouerghui et al [15] studied
the effect of coupling on the exciton radiative lifetime of
a similar configuration and pointed out that the PL spectra
measured can be attributed to a bimodal size distribution of
the nanoring ensemble.

In the present paper, we generalize the theoretical work
conducted by Palmero et al [16] to the coupling rings and
mainly concentrate on the coupling effect on an exciton’s
energy levels for two concentric rings embedded in two parallel
layers. The hopping coefficients between rings are derived
in a new form. The discussions are focused on the AB
oscillation of excitonic levels and the influence of geometrical
parameters on the energy levels. The rest of the paper is
organized as follows: section 2 concerns the theoretical model
and analysis. Presented in section 3 are the numerical results
for the dependence of excitonic levels on magnetic field and
geometrical parameters of the system. Finally, a summary is
given in section 4.

2. Theoretical model and analysis

The system we consider here is made up of two coupling
semiconductor rings that are embedded in two parallel layers
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and are penetrated by a uniform magnetic field. The material
between these two layers is GaAs. Without taking into
account the spin–orbit coupling, the spin-dependent part of the
Hamiltonian is in a linear form with the magnetic field [17],
so it just provides a linear addition to the total energy of
the system. For the convenience of calculation, we restrict
our model to coupling a one dimensional ring system with a
spinless electron and a spinless hole.

Each ring, considered in our model, consists of two series
of sites, one for electrons, the other for holes, and each series
consists of M sites which are equally spaced in each ring, as
sketched in figure 1. The thickness of the spacer is taken as
d . We assume that the Coulomb potential is short range and
consider the interaction only when the electron and the hole are
in the same layer. The system can be described by the attractive
Fermionic Hubbard model [16, 18]. We also assume that the
particles can only hop between the nearest neighboring sites.
So the Hamiltonian of the system reads

H = Hint + H⊥ + H‖, (1)

where Hint, H⊥ and H‖ represent the interaction between the
electron and the hole, the hopping between different rings, and
the hopping contribution between nearest neighboring sites on
a same ring, respectively. They can be written as

Hint = −
2∑

i=1

M∑

j,l=1

γ(d j,l)a
†
i, j ai, j b

†
i,lbi,l, (2)

H⊥ = −
2∑

i=1

M∑

j=1

(t⊥
i,ee2iπϕea†

i, j ai+1, j

+ t⊥
i,he2iπϕhb†

i, j bi+1, j + h.c.), (3)

H‖ = −
2∑

i=1

M∑

j=1

[t‖
i e2iπϕi/M (a†

i, j ai, j+1

+ μb†
i, j+1bi, j)+ h.c.], (4)

where a†
i, j (ai, j ) creates (annihilates) an electron at site j on

the i th ring. Similarly, b†
i,l (bi,l ) is the creation (annihilation)

operator for a hole at the corresponding sites. The parameter
γ(d j,l) represents the intensity of the interaction between
the electron on site j and the hole on site l, where d j,l

represents the distance of these two particles. The symbol
t⊥
i,e(h) represents the hopping coefficient of the electron (hole)

between neighboring sites on different rings. 2πϕe (2πϕh)
represents the change of the electron’s (hole’s) Aharonov–
Bohm phase, which is introduced by the deflection from its
original position (the position with no external magnetic field),
when hopping between different rings. The parameter t‖

i means
the electron’s hopping coefficient between neighboring sites
along the i th ring. The symbol ϕi represents the magnetic flux
through the i th ring, in the unit of the flux quantum, hc/e. μ
represents the ratio of the effective masses of the electron and
the hole in the InGaAs material which makes up the nanorings.

From the original definition of the hopping matrix
element [19],

ti j = h̄2

2m∗

∫
ψ∗

i (x)�2 ψ j (x) dx, (5)

Figure 1. Sketch of two concentric nanorings embedded in two
layers separated by a spacer. Each ring consists of M sites in which
electrons (holes) can hop between the nearest neighboring sites. The
system is penetrated by a uniform magnetic field.

where ψi is the wavefunction at site i , we can get the hopping
coefficient in the same ring as [11, 16]

t‖
i = h̄2

2m∗
ε0

4r 2
i sin2(π/M)

, (6)

where ri (i = 1, 2) represents the nanoring radius (r1 for the
small ring and r2 for the large ring), and ε0 is related to the
properties of materials.

For the hopping coefficient between different rings, using
the variable separation technique, t⊥

i,e(h) can be divided into two

parts t⊥z
i,e(h) and t⊥(ρθ)

i,e(h) according to the symmetry of the system.
The former is proportional to the hopping coefficient between
the two layers where the rings are embedded. Using the finite
square well potential approximation along the z direction, we
find

t⊥z
i,e(h) = h̄2

2m∗β
2e−βd χε1

1
βd + 1

1+cos(kz h)

[
h
d + sin(kzh)

kz d

] , (7)

where kz is the wavevector along the z direction in the ring, h is
the height of the ring along the z direction, d is the thickness of
the GaAs spacer and β is the attenuation constant in the spacer,
which is determined by the energy of the particle in the finite
square well along the z direction and height of the barrier, V0.
The parameter χ is the overlap integral of the wavefunction
in the (ρ, θ) plane and ε1 is the parameter that is related to
the properties of materials. Carefully analyzing t⊥z

i,e(h), we can
find that it is a product of the particle’s energy and the overlap
integral of the wavefunctions in different layers.

For the latter part of the hopping coefficient between
different rings, t⊥(ρθ)

i,e(h) , because particles are confined in two
regions along the ρ direction, it is reasonable to assume that
it has a similar form as the former part described above.
According to the data used in [3] and [17], the typical width
of rings along the ρ direction is much larger than the height,
h, so the ground state energy of particles in the ρ direction can
be approximately taken as −V0 taking the GaAs barrier as the
zero point of energy. We can get t⊥

i,e(h) in the form

t⊥
i,e(h) = h̄2

2m∗
(
β2 + β ′2

)
e−(βd+β ′�l)β ′�l

× ε1

1
βd + 1

1+cos(kzh)

[
h
d + sin(kz h)

kz d

] . (8)
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Here we take the median value of the inner and outer radii
of one ring as the radius to calculate the coupling. It is
also convenient to use this method to calculate the coupling
between rings with finite width by dividing one ring into
several concentric rings, as in [16], each of which can be
viewed as a quasi-one-dimensional ring. β ′ is the attenuation
constant of the wavefunction in the (ρ, θ) plane, taken as√

2m∗V0/h̄. �l, the length of K P in figure 1, is the projected
distance of the nearest neighboring sites on different rings and
can be calculated.

For the parameter ϕe (ϕh), it is necessary to calculate
the electron’s (hole’s) deflection from the original position,
which means the position it is supposed to reach when hopping
without external magnetic field. Here we use the semiclassical
method to calculate this deflection. Using the result in [20, 21],
we can get the average particle time for one particle to get
through the single rectangular barrier under zero bias as

τ = h̄

8(V0 − E0)
√

E0(V0 − E0)

× [V0 sinh(2βd)+ 2βd(V0 − 2E0)] (9)

where E0 is the particle’s energy. It is noted that τ represents
the transmission time of the particle to cross through the GaAs
layer [21].

It is reasonable to divide the tunneling process into two
parts by the variable separation method, one along the z
direction, the other in the (ρ, θ) plane. We take the GaAs layer
as homogeneous, then we can get the deflection of the particle
from τ . In the form of radians, it reads:

�ϑ = arccos
r2 − r sin θ

r1
, (10)

where θ = q Bτ/m∗ represents the angle that the particle
moves in its cyclotron movement from the site on the large
ring, and r is the cyclotron radius of the particle and reads:

r = r2
sin θ −

√
sin2 θ − 2(1 − cos θ)(1 − (r1/r2)2)

1 − cos θ
. (11)

Here we have to take into account the restriction emerging
from the system’s configuration. The first one is that the
cyclone radius r should be larger than the difference of
the radii of the two rings, which ensures that the particle
can jump from one ring to the other one. The second
one is that r1/r2 > sin(θ/2) which ensures the solvability
of equation (11). These restrictions can also influence the
hopping coefficients: when r < �r12 or r1/r2 < sin(θ/2), the
parameter t⊥

i,e(h) should be taken as 0 because the particles can
not reach the smaller ring when hopping from the bigger ring.

To ensure the hermitian symmetry of the Hamiltonian,
we make the assumption that the hopping is reversible, which
means we just take into account the flux in the area �K P O
in figure 1 when calculating the change of the AB phase as
the particles hop between different rings. It must be made
clear that the neighboring sites on different rings here mean
the corresponding neighboring sites at zero magnetic field.
When a magnetic field is added perpendicular to the rings, this
neighboring relationship will not be affected.

For the convenience of calculation, we take the sites on
the large ring as stationary and the sites on the small ring
have a constant deflection from their original positions when
an external magnetic field is applied. The two series of sites
(for electrons and for holes) on the large ring is chosen to
coincide with each other, as in [16, 11]. For the sites on the
small ring, at zero field, we choose the j th site on the plane that
is determined by the j th site on the large ring and the centers of
two rings. However, if an external magnetic field is applied to
the system, when hopping between different rings, the electron
and the hole will deflect in opposite directions due to their
different signs of charge, so the sites on the small ring, which
carry two states (one for electrons and the other for holes) at
zero field, will be split into two sites that are separated by a
constant distance, which means the small ring will contain two
separated series of sites: one for electrons and one for holes.

We consider the interaction between particles only when
they are in the same layer and assume the Coulomb potential
to be short range [16], by taking the cut-off radius to be
r1 sin(π/M). On the other hand, from the system’s symmetry,
the Coulomb potential should be invariable with the change of
its position [13]. Hence the Coulomb potential is taken with
the form of a square well:

V(d j,l) =
{

−γ0, for d j,l � r1 sin(π/M);
0, for d j,l > r1 sin(π/M).

(12)

Here γ0 is the intensity of the interaction when the electron and
the hole are on the same site [16], d j,l represents the distance of
the site with an electron from the nearest site with a hole. The
unit of the parameter γ0 is chosen to be the electron hopping
energy in the smaller ring, h̄2ε0/4m∗r 2

1 sin2(π/M), as in [16].
For the parameters ε1 in equation (8), we generally take it as
ε1 = 1.

In [22], Scott provides us the number-state method to get
the eigenvalues of the Schrödinger equation. This method
has been widely applied to the investigation of the Hubbard
model [18]. Using this method, excitons in a finite-width
nanoring are studied by Palmero [16]. In this paper, we will
use this number-state method to study a system with two
different sized nanorings embedded in two different layers.
The number-state base vector is chosen in the form:

∣∣∣∣
nh

11, nh
12, . . . , nh

1M; nh
21, nh

22, . . . , nh
2M

ne
11, ne

12, . . . , ne
1M; ne

21, ne
22, . . . , ne

2M

〉
. (13)

Here, ne
i j (nh

i j ) represents the number of the electron (hole) in
the j th site on the i th ring. We assume that the number of
electrons and that of holes are conservative and both of them
are equal to one. Because of the rotation symmetry of the
system, a general eigenfunction can be written as

|ψ2,τ0〉 =
4∑

i=1

M∑

m=1

ci
m |ψ i

m〉 (14)

where

|ψ1
m〉 = 1√

M

M∑

j=1

(
T
τ0

)( j−1)∣∣∣∣
1, 0, . . . , 0, . . . , 0; 0, 0, . . . , 0

0, 0, . . . , 1︸ ︷︷ ︸
m

, . . . , 0; 0, 0, . . . , 0

〉
.

(15)
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Here the index i represents four kinds of wavefunction of the
system: (1), both the electron and the hole are in the smaller
ring; (2), the hole is in the smaller ring and the electron is in the
larger ring; (3), the hole is in the larger ring and the electron is
in the smaller ring; (4), both the electron and the hole are in the
larger ring. T is the translation operator defined as

T
∣∣∣∣
nh

11, nh
12, . . . , nh

1M ; nh
21, nh

22, . . . , nh
2M

ne
11, ne

12, . . . , ne
1M ; ne

21, ne
22, . . . , ne

2M

〉

=
∣∣∣∣
nh

12, nh
13, . . . , nh

11; nh
22, nh

23, . . . , nh
21

ne
12, ne

13, . . . , ne
11; ne

22, ne
23, . . . , ne

21

〉
,

and τ0 = eik is the eigenvalue of T that corresponds to |ψ2,τ0〉,
where k is the propagation number [22]. It is possible to block
diagonalize the Hamiltonian where each block has a constant
k [16, 22].

Using these base vectors, we can get the Hamiltonian
matrix in each k subspace:

H(k)
2,τ = −

⎛

⎜⎝

H11 H12 H13 H14

H ∗
12 H22 H23 H24

H ∗
13 H ∗

23 H33 H34

H ∗
14 H ∗

24 H ∗
34 H44

⎞

⎟⎠ . (16)

Here each Hii ′ is a M × M matrix. For the diagonal elements,
they have the form

Hi i =

⎛

⎜⎜⎜⎝

p1,i qi 0 · 0 q∗
i

q∗
i p2,i qi 0 · 0

0 q∗
i p3,i qi 0 ·

· · · · · ·
qi 0 · 0 q∗

i pM,i

⎞

⎟⎟⎟⎠ . (17)

Here p j,1 is determined by the particle’s deflection and the
Coulomb potential, p j,2 = 0, p j,3 = 0, p1,4 = γ , p j,4 = 0
(for j 	= 1), and

q1 = t‖
1 (1 + μeik)ei2πϕ1/M , (18)

q2 = t‖
2 ei2πϕ2/M + t‖

1μeikei2πϕ1/M , (19)

q3 = t‖
2μeikei2πϕ2/M + t‖

1 ei2πϕ1/M , (20)

q4 = t‖
2 (1 + μeik)ei2πϕ2/M . (21)

All of the off-diagonal elements in equation (16) have the di-
agonal form, H12 = H34 = t⊥

e ei2πϕe I, H13 = H24 = t⊥
h ei2πϕhI,

H14 = H23 = 0.
The dependence of the eigenvalues on the propagation

number, k, has been studied thoroughly in [16, 22, 18], so
in this paper, we will not take into account the influence
of k on the eigenvalues of the system and choose k = 0
in the numerical computation. We can get the energy level
distribution and the corresponding state vectors of the system
by diagonalizing the Hamiltonian matrix.

3. Numerical results and discussion

For a fixed system, which means the properties of the material
that makes up the nanorings, the geometrical parameters of
the system and the intensity of the external magnetic field
are all known, all the parameters in the Hamiltonian matrix
can be calculated. The parameters that can be varied are:

Table 1. Parameters of Inx Ga1−x As used in the calculation. Unless
noted, values are from [23].

Quantity Inx Ga1−x As

Eg (eV) 0.477x2 − 1.579x + 1.519
�SO (eV) 0.477x2 − 0.428x + 0.341
Ep (eV) −7.3x + 28.8
F −0.96x − 1.94

m0/m∗
e (1 + 2F)+ Ep(Eg+ 2

3�SO)

Eg(Eg+�SO)

ECBO (eV) 0.96x − 0.1x2 ([24])
γ1 20.0x + 6.98(1 − x) ([25])
γ2 8.5x + 2.06(1 − x) ([25])
γ3 9.2x + 2.93(1 − x) ([25])
m0/m∗

hh γ1 − 2γ2

the intensity of the external magnetic field, the radii of the
two rings, the thickness of the GaAs spacer, the concentration
of In in the nanorings and the thickness of the two rings
in the z direction, h. The material parameters used in the
calculation are summarized in table 1. The number of sites, M ,
is chosen to be 20. The typical thickness of the rings used is
1 nm [3, 15], the concentration of In x = 0.60 and the intensity
of the interaction γ0 = 1.0 [16].

3.1. AB oscillations

In figure 2, we plot the flux dependence of the exciton’s energy
which clearly shows the AB oscillation. From figure 2(a),
we find the amplitudes of the oscillation for the ground and
first excited states are about 1 and 7 meV. Compared with the
AB oscillation of the same system neglecting the Coulomb
interaction, figure 2(b), which shows amplitudes about 5 and
15 meV, the amplitudes are significantly suppressed. Moreover
this suppression is significantly different for the ground state
and the first excited state. For the first excited states, the energy
values of the lowest points are unchanged. But for the ground
state, the energy level is totally lowered with the emergence
of the interaction between the electron and the hole. It is also
found that the Coulomb potential leads to the vanishing of the
level-crossing between the ground states and the first excited
states and the formation of an energy gap between them.

The reason for all these phenomena is the variation of
binding states of particles as plotted in figure 3. The origin
of the AB oscillation is the finite size of the exciton [9],
here, corresponding to the coefficients of basic wavevectors.
Because the small ring corresponds to the easy hopping case
(larger t‖), the ground state corresponds to the tight binding
state in the small ring, which means the coefficient of ψ1

1 is
much larger than that of the others, figure 3(a). With increasing
intensity of Coulomb interaction, on one hand, the absolute
value of the interacting part of the total energy becomes larger,
which corresponds to the phenomena of the decrease of the
system’s ground state energy. On the other hand, the kinetic
part of the individual particle’s energy, corresponding to the
AB oscillation, becomes smaller because it becomes more
and more difficult for individual particles to escape from the
attractive potential, which means a decrease of the amplitude
of the AB oscillation. In fact, if γ0 is chosen to be 2.0, the
amplitude of the ground state energy becomes smaller than

4
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Figure 2. Dependence of the exciton’s energy on the flux. The
parameters used are r1 = 10 nm, r2 = 14 nm, d = 3 nm. In (a), we
plot the energy of ground state and three excited states with γ0 = 1.0.
In (b), the parameter γ0 is chosen to be zero. In (c), for the
convenience of comparison with our model, we plot the ground state
energy of a single ring with radius r1 = 10 nm and γ0 = 1.0.

0.2 meV, which is comparable to the correction of the ground
state energy caused by the coupling of the two rings.

On the contrary, the states for the lowest points of
the first excited states correspond to the relatively free
kinetic movement of the electron and the hole, which means
the coefficient of ψ1

1 , corresponding to the influence of
Coulomb interaction, can be approximately taken as zero as in
figure 3(c). So the increase of γ0 will not influence the system’s
energy at these magnetic field.

In figure 3(b), it is interesting that the largest coefficient is
not that of the ψ1

1 , but the ψ1
2 . The reason for this phenomenon

is the deflection of particles introduced by the magnetic field.
According to our computation, the value of this deflection is
just above �d/2 at 6.5 T, which means the ψ1

2 represents the
state with Coulomb interaction in our model.

At higher excited states, unlike the discrete energy levels
of single rings, figure 2(c), level-crossing emerges when
coupling is taken into account, figure 2(a). The reason for this

phenomena is the overlapping of two series of energy levels
which are determined by the arrangement of the electron and
the hole. The level-crossing points represent the changing of
different types of system’s wavefunction defined above. For
example, to the second excited states, before about B = 6.0 T
the electron is mainly confined in the small ring and the hole
is in the large ring, figure 3(e), which represents the third type
vector; after the crossing point, both the electron and the hole
are confined in the smaller ring, figure 3(f), which is the first
type vector.

3.2. Geometrical parameters of the system

The exponential form of t⊥
n,i in equation (8) requires the

difference of the radii of the two rings and the thickness of
the GaAs layer to be small for a significant coupling effect.
In figure 4, we plot the dependence of the system’s energy
on the radius of the large ring. It is clearly shown that when
the large ring’s radius is smaller than 14 nm, which means
the difference of radii is smaller than 4 nm, the system’s
energy changes significantly with the variation of the radius.
Then, if the radius difference of the two rings is larger than
4 nm, continuing to increase the large ring’s radius will not
change system’s energy for the three lowest energy levels. The
reason for the fast increase of the system’s energy at small
radius difference is the sharp decrease of the coupling intensity
between two rings, which means a fast increase of the system’s
energy led by a much stronger confinement condition. For the
lowest states, when the difference of radii is above 4 nm, the
coupling between two rings is so small that the probability for
the particles in the large ring can be taken as zero, so increasing
the radius of the large ring will not lead to a variation of the
system’s energy.

However, for the higher excited level, after the fast
increasing region, it experiences a smooth increase then decays
to a constant at larger radius, as plotted in figure 4. The reason
for this phenomenon is that this state mainly represents the
third type of wavefunction as pointed out above, which means
the electron and the hole are mainly confined in different rings.
The smoothly increasing region represents decoupling of the
two rings for the electron. The hole is totally confined in
the large ring at small radius difference because of the great
influence of its larger effective mass on τ in equation (9). This
decoupling process coincides with the description of coupling
in [15]. At large radius difference, the coupling can be taken as
zero, which means the system can be taken as two independent
single rings, each containing one particle. So at large radius
difference, the energy of the electron will not be influenced
by the change of the large ring’s radius. For the hole in the
large ring, on one hand, its magnetic flux increases with the
enlargement of the ring, which means energy oscillation with
an increase of the large ring’s radius. On the other hand, the
amplitude of the hole’s oscillation decreases with an increase
of the large ring’s radius [16]. Then the system’s energy decays
to a constant with this increasing as it is the summation of these
two parts of energy.

In figure 5, we plot the dependence of the system’s ground
state energy on the small ring’s radius at different values

5



J. Phys.: Condens. Matter 20 (2008) 365222 W Song et al

Figure 3. Normalized probability of basic vectors at different magnetic fields. The parameters used are d = 3 nm, r1 = 10.0 nm,
r2 = 14.0 nm. In (a), we plot the probability of basic vectors of the ground state at 3.2 T, which corresponds to the peak of the ground state’s
level, and in (b) we plot that at 6.5 T corresponding to the lowest point. In (c) and (d) we plot that of the first excited state corresponding to the
lowest point and peak. In (e) and (f) we plot that of the second excited state at 5.0 and 6.5 T, which correspond to two types of state as we
defined above.

Figure 4. Dependence of the energy on the radius of the larger ring.
The parameters are chosen to be r1 = 10 nm, B = 20.0 T,
d = 3.0 nm.

of magnetic fields and that for the single ring and coupling
concentric rings with same radius. At small r1, the difference
of the system’s energy from that of the single ring is negligible
because of the weak coupling between rings. However, in the

Figure 5. Dependence of the ground state energy on the radius of
the small ring. The parameters used are d = 3.0 nm, r2 = 15 nm,
B = 0.1, 10, 20 and 30 T. For the convenience of comparison, we
also plot the dependence of the energy on radius for the single ring
at B = 0.1 T and that for coupling rings with the same radius at
B = 0.1 T.

strong coupling region, the difference can reach 45 meV when
the radius difference is about 1.5 nm, which is about forty times
larger than the amplitude of the AB oscillation.
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We also find that this energy difference decreases with
increasing magnetic field in figure 5. The reason for this
phenomenon is the modulation of the coupling by the magnetic
field. At the same radius difference, the cyclotron radius of the
electron decreases with the increasing of the magnetic fields,
which means the distance of the nearest neighboring sites on
different rings is increased, so the coupling is weakened. This
phenomenon provides us an opportunity to change the PL
spectra by the magnetic field.

Another interesting thing to point out is that the
dependence of energy on r1 does not show an oscillation effect,
in figure 5, when the magnetic flux changes with r1. The reason
for this phenomenon is that the amplitude of the AB oscillation
for the ground state is too small when being compared with
the variation of the energy. For the second and third excited
states, which have an amplitude about 10 meV, we can get a
modulated oscillation behavior when increasing r1. But for the
higher excited states, because of the level-crossing, it becomes
difficult to get a clear oscillation behavior.

The results we get for the energy difference from that
of the single ring, which is caused by the coupling effect,
coincides with the experimental work in [3]. We find the
energy difference is about 45 meV when the difference of the
radii is 1.5 nm. In [3], when the GaAs spacer is 3 nm, this
difference is about 50 meV. Just as Granados et al [3] pointed
out, the decrease of the energy is caused by the coupling
between rings. Moreover, we find the coupling between rings
with different radii is the dominant part of the coupling effect
because the coupling between rings with same radius can
only lead to a constant difference of about 0.18 eV and this
deflection is almost unchanging with variation of the radius and
much larger than the data in [3].

In figure 6, we plot the influence of the GaAs spacer on the
system’s energy at different magnetic fields. Because of the
exponential form of τ in equation (9), the spacer’s thickness
can greatly influence the cyclotron radii of the electron and the
hole, which will lead to a variation of the system’s energy.

From figure 6, we find the energy levels can be divided
into three regions for each magnetic field: two fast increasing
regions and the constant region. The reason for both of
these increases of the system’s energy is the decoupling
between rings. Because of the great difference on τ led by
β in equation (9), the spacer’s thickness at which the hole’s
cyclotron radius becomes smaller than the radius difference
is much smaller than that for the electron. So the hole is
totally confined in the small ring at a relatively small thickness
of the GaAs spacer, which corresponds to the ‘A’ points in
figure 6. On the other hand, with an increase of the spacer’s
thickness, the electron is also more and more confined in the
small ring. At the ‘B’ points, the electron is also totally
confined in the small ring, which represents the decoupled
points of the rings. After these points, an increase of the
spacer’s thickness will not influence the system’s energy, which
corresponds to the constant region where we can take this
system as two independent rings. It is interesting that the
thickness of the GaAs spacer at which the electron (hole)
shows totally decoupled phenomena coincides with the data
in [15].

Figure 6. Dependence of the ground state energy on the thickness of
the spacer. The parameters used are r1 = 10 nm, r2 = 13 nm,
B = 1.0, 10.0, 20.0 and 30.0 T.

From figure 6, we find the energy region of the
AB oscillation can be changed by modulating the spacer’s
thickness. For every value of the spacer’s thickness, the energy
at a certain magnetic field corresponds to one point on the
AB oscillation. So the largest distance between these values
provides us the energy region we can get by changing the
magnetic field. From figure 6, this region can be several times
larger than the amplitude of the AB oscillation, which is the
result of the modulation of coupling by the magnetic field,
as pointed out above. On the other hand, by changing the
thickness of the spacer, we can get the energy region of the
AB oscillation we want.

4. Conclusions

In conclusion, we have studied the influence of geometric
parameters and that of the coupling on the AB oscillation
in concentric double nanorings by the attractive Fermionic
Hubbard model. According to our results, the amplitude of
the AB oscillation is strongly influenced by the intensity of
the Coulomb potential and the energy levels decrease with the
emergence of the coupling between rings. This coupling also
leads to the level-crossing of the high excited states.

By modulating the radii of the two rings, we can change
the values of the energy levels. In the strong coupling region,
the energy levels increase sharply with an increase of the larger
ring’s radius. In the weak coupling region, the lowest energy
levels remain unchanged and the high excited level exhibits
a decaying behavior. With the variation of the small ring’s
radius, in the strong coupling region, the energy difference
from the energy of the single ring decreases with an increase of
the magnetic field; in the weak coupling region, the system’s
energy is almost the same as that of the single ring.

By changing the thickness of the GaAs spacer, we can
modulate the coupling of the two rings, which has a great
influence on the system’s energy. At the different magnetic
fields, there are two fast increasing regions, corresponding to
the decoupling for the hole and the electron, and a constant
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region, corresponding to uncoupled region. We also predict
that by changing the thickness of the GaAs spacer, the energy
region of the AB oscillation can be modulated.
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